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Abstract— This paper presents an application of deploying an adaptive state-space feedback controller for 

vibration suppression in a flexible cantilever beam system using single and multiple control actuators and 

deflection sensors optimized with an On-line Particle Swam Optimization (PSO). The PSO is adopted for the 

optimization problem because of its proved simplicity and performance in different linear and nonlinear 

applications. Neither expensive computations nor specialized methods are needed. The behavior of the complex 

nonlinear beam system makes it difficult to locate a global minimum. This nonlinear vibration problem is 

equivalently changed to the problem of function optimization, which is tackled by using PSO, where a population-

based stochastic optimization technique inspired by the social behavior of bird flocking is used, The approach is 

validated using numerical simulations; and the results confirm the effectiveness of the PSO approach and its ability 

to highly improve the vibration cancellation performance of the flexible beam system. 

 

Keywords— Active vibration control, Cantilever beam, Control actuator, Deflection sensors, Flexible beam 

structure, Optimization, Particle swam optimization algorithm. 

 

I. INTRODUCTION 

Engineering structures/plants with flexible parts are usually associated with inherent vibration 

properties. The nature and extent of this vibration depend on the type of the structure and its 

mountings. These vibration problems become more prominent when the structure is placed on 

a relatively flexible base or then there is a considerable amount of movement within the plant. 

Vibration control of these engineering structures is essential for their proper operation and 

long life cycle. A considerable amount of research work has been done in this area [1]-[4]. 

This paper presents an investigation into simulation and vibration control of a cantilever beam 

system; and it presents an effective vibration cancellation of the structure using single or 

multiple control actuators and observation sensors. A cantilever beam system is considered 

because it is used in a number of flexible structures such as aircraft wings and space structures. 

Due to the distributed nature of the governing equation describing structural dynamics, 

control of flexible structures involves a very complex process [5]. It is important initially to 

recognize the flexible nature of the beam, construct a mathematical model for the system and 

account for interactions with disturbances. The commonly used method, for numerically 

solving the systems governing equation, is based on finite elements (FE) and finite difference 

(FD). The computational complexity and consequent software coding is a major disadvantage 

of this technique, especially in real time system applications [6]. As FD method is generally 

found to be more appropriate, it is used in this paper. A reduced order model with the first few 

dominant modes is developed to implement the modal controller. For the implementation of 

the modal controller, a Kalman-Bucy filter state observer is used to estimate the state vector, 

which is not measured through [7], [8]. Several interesting control application areas, which 

adopt PSO algorithm, have recently been proposed by researchers in automatic generation 

control tuning [9], design of controllers [10], [11], adaptive inverse control [12], [13], 

predictive control [14], [9], PI and PID controllers [15] and ultrasonic motor control [16]. 



323                              © 2016 Jordan Journal of Electrical Engineering. All rights reserved - Volume 2, Number 4 

Currently, PSO is a well-known effective approach for solving complex optimization 

problems [17], [18]. 

These control algorithms can provide adequate control management for wide classes of 

problems related to active vibration suppression though they are sensitive to structure 

characteristics and require an exact mathematical model of a structure even for the collocated 

system. Because they are sensitive to operating conditions, it is difficult to adjust controller 

gains. The most commonly used control algorithms are “classical” control algorithms such as 

direct proportional feedback, constant gain velocity feedback (CGVF) and constant amplitude 

velocity feedback (CAVF) control. Optimal control algorithms are also used (LQR and LQG) 

for active vibration suppression [19]. An alternative is the use of intelligent control algorithms 

based on soft computing schemes such as fuzzy logic control (FLC) algorithms [20] and 

active controller based PSO [21]. Therefore, FLC method has been applied widely for active 

vibration control of flexible structures [22]. 

In this paper, PSO is adopted for the vibration cancellation problem because of its proved 

simplicity and performance in different applications. Neither expensive computations nor 

specialized methods are needed. However, this research paper found that PSO outperforms 

random search throughout and at the end of the search process as it shows a better 

convergence behavior and over-fitting avoidance. This result indicates that PSO can work as 

any-time method for the vibration suppression problem of flexile structures. In addition, PSO 

based-state feedback controller, as compared to the general state feedback controller, 

performs extremely well in high dimensional optimization problems. Consequently, it is used 

to find the proper and effective state feedback parameters and remove the tedious and 

repetitive trial and error process of using traditional techniques [23]. Evolutionary 

optimization algorithms are used to design the controller for vibration cancellation. The 

proposed method operates better in the aspect of designing the controller since it provides 

ample opportunities for designers to choose the most appropriate point based upon design 

criteria [24]. The simulation results of the beam system behavior and the effectiveness of the 

controller on vibration reduction using single or multiple control actuators and sensors are 

important features of this paper. 

II. CANTILEVER BEAM SYSTEM SIMULATION 

The motion of vibrating structures can be described by a partial differential equation. For a 

fixed-free cantilever beam structure (the data for the beam is presented in Appendix A), the 

time response of the system in lateral motion can be described by the fourth order of partial 

differential equation (PDE) [25]: 
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To construct a suitable simulation platform for testing and verifying control mechanisms, the 

central FD is the most accurate and deployed form in simulation environment. After the 

discretization of (1) and subsequent rearrangement, it displaces various beam elements. Using 

matrix form for the fixed end yields: 
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and S is a penta-diagonal matrix given by: 
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The necessary and sufficient condition of stability for this method to give a convergent 

solution is satisfied if 25.00 2   [7]. The schematic diagram of the beam system for 20 

stations (sections) is illustrated in Fig. 1. The characteristic equation [25] for the fixed-free 

beam is: 

1)cosh()cos( ll ii   for i=1, 2,..., n                                                                                 (4) 

 

where l is the beam length; li are the roots of the characteristic equations; n is the number of 

the considered modes; and 
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  are the resonant frequencies; The natural frequencies 

of the first five modes are 1.14, 7.12, 19.93, 39.05 and 64.56Hz respectively. 
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Fig. 1. Schematic diagram of the cantilever beam 

 

The deformation of the beam is measured by Hall Effect position sensors (observation points). 

The measurements are utilized to generate the control force using some design philosophy. 

Cancellation forces are implemented via control electromagnetic actuators to suppress 

vibrations at control points. Clearly, there are many configurations arising from possible 

variations in the number of observation points, control actuators and control points together 

with possible various locations for the sensors and actuators. It is considered to have different 

number of sensors and control actuators. Moreover, the number of excited modes depends on 

the disturbance location; for example, if disturbance is located at a modal node, this mode will 

not be excited. In a similar manner, if the observation point and/or the control actuator are 

placed at a modal node, this mode will be unobservable and/or uncontrollable [26]. In 

addition, the position of control components (sensors and actuators) should be chosen 

carefully for effective control based on the beams' nodes and antinodes as well as the 

optimization technique as indicated in Appendix A. A different number of sensors and 

actuators is utilized for observing or controlling the vibration of a different number of modes. 

In our work, a modal technique is utilized to control the beam‟s modes using both collocated 

and/or non-collocated sensor/actuator pairs. 

III. PSO METHOD 

The PSO algorithm was originally proposed by Kennedy and Eberhart in 1995 [27].The PSO 

algorithm is an evolutionary computational technique, but it differs from other well-known 

evolutionary computational algorithms such as genetic algorithms. Although population is 

used for searching the search space, there are no operators applied on the population. Instead, 

in PSO, population dynamics simulate a „bird flock‟s‟ behavior, where social sharing of 

information takes place; and individuals can profit from the discoveries and previous 

experiences of all the other companions during their search for food. Thus, each companion, 

called particle, in the population, which is called swarm, is assumed to „fly‟ over the search 

space in order to find promising regions of the landscape. Optimization methods based on 

swarm intelligence are called behaviorally inspired algorithms as opposed to genetic 

algorithms, which are called evolution-based procedures [23]. 

In the context of multivariable optimization, the swarm is assumed to be of specified or fixed 

size with each particle located initially at random locations in the multidimensional design 

space. Each particle is assumed to have two characteristics: a position and a velocity. In 

addition, it wanders around in the design space; and remembers the best position (in terms of 

the food source or objective function value) it has discovered. Particles communicate 

information or good positions to each other; and adjust their individual positions and 

velocities based on the information received on good positions. Thus, the PSO model 

simulates a random search in the design space for the maximum value of the objective 
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function. As such, gradually over much iteration, birds go to the target (or 

maximum/minimum of the objective function) [27]. 

Let x and v denote a particle position and its corresponding flight velocity in a search space, 

respectively. Therefore, the i
th
 particle is represented as ),....,,( 21 idiii xxxx   in the d-

dimensional search space. The best remembered of the i
th
 individual particle position is 

recorded and represented as ),....,,( 21 idiii pbestpbestpbestpbest  . The index of the best 

remembered swarm position among all the particles in the group is represented by the

)21 ,....,,( dgbestgbestgbestgbest  . The flight velocity of particle i is represented as

),.....,,( 21 idiii vvvv  . The modified velocity and position of each particle can be calculated 

using the current velocity and the distance from 
ipbest  to gbest as presented in the flow chart 

shown in Fig. 2 where Nod, Noi, and Nop are the number of dimensions, the maximum iteration 

number, and the number of particles respectively [11], [16]. In addition, w is adopted as the 

inertia weight factor; c1 and c2 are acceleration constants. 

 

 
Fig. 2. Block diagram of PSO algorithm 

 

The modified velocity and position of each particle can be calculated using the current 

velocity and the distance from 
idpbest  to 

dgbest as presented in the following formulas [10], 

[27]: 
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where c1 and c2 0 , n are the number of particles in a group; m is the number of members in a 

particle; r1 and r2 are two random numbers between 0 and 1;
id
kx  and 

id
kv  are the velocity and 

current of particle i in the thd -dimensional search space at iteration k, respectively. 
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In general, PSO shares many similarities with evolutionary computational techniques. The 

main difference between the PSO and other approaches is that PSO does not have operators. 

Particles update themselves with the internal velocity; they also have a memory that is 

important to the algorithm. In addition, PSO is easy to implement as it has few parameters to 

adjust. Furthermore, PSO is computationally inexpensive since its memory and speed 

requirements are low [22]. 

IV. SIMULATION RESULTS AND PERFORMANCE EVALUATION 

To investigate the effectiveness of the PSO-based controller on the performance of a 

cantilever beam system, the FD approximation of the beam system using 20 stations is 

utilized. The integration step-size of the FD simulation is chosen to be 0.33ms, which is 

sufficient to cover the dominant resonance modes of the beam; this has been demonstrated to 

yield a good level of accuracy. All simulation results are carried out when a step disturbance 

force of 0.1N is assumed to be applied at a location 0.65l from the fixed end of the beam. The 

three dimensional description of the vibration of the uncontrolled beam along its length is 

shown in Fig. 3 where the beam deflection is zero at the clamped end. It increases with the 

distance   from the fixed end, and reaches a maximum distance at the free end. This result is 

as expected; and it confirms the validity of the FD simulation in representing the behaviour of 

the cantilever beam. 

 
Fig. 3. Time response of the un-controlled cantilever beam along its length 

 

Before presenting control simulation results, the most dominant modes, which do exist in our 

beam system, need to be illustrated. It is assumed that the beam is disturbed by a unit step 

force of 0.1N by an actuator placed at the end of the beam. An indication of how many modes 

exist can be attained by studying the power density spectrum of the beam‟s time response to 

disturbances (i.e. a step). Such a spectrum density plot is as shown in Fig. 4 at different 

observation points along the beam, where sensing characteristics for the first three modes 

seem to be satisfactory. However, the beam under consideration in this study has relatively 

low sensitivity for the higher (residual) modes. It can be observed that the first three modes 

are dominant. It should be noted that, the power density of some nodes has disappeared or 

equalled zero; this is because the deflection sensor is located at the beam nodes of such modes. 

The results clearly show that the effect of the location of the sensor is as important as the 

location of the control actuator. This is due to the fact that when the sensor is located, for 

example, at a node of one (or more) of the dominant modes, the behaviour of this mode will 
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be unobservable (or undetectable) and then uncontrollable. The nodes and the antinodes of the 

cantilever beam are presented in Appendix A. 

 

 
Fig. 4. Frequency response of the uncontrolled beam deflections at different locations along its length 

 

In order to demonstrate the effectiveness of the PSO in vibration suppression, the evolution 

procedure of PSO algorithms which was shown in Fig. 2 has been considered. The structure 

of the controller based-PSO algorithms is shown in Fig. 5. Moreover, the frequency and time 

responses are chosen as the performance indices to be obtained. Since computational time is 

one of the important factors to be considered in an optimization process, investigations on the 

number of individuals/particles (Nop) were carried out by varying those numbers from 10 to 

200. Fewer individuals/particles resulted in high values of errors but faster computational 

time, while a high number of individuals/particles resulted in smaller values of the mean error 

with a very slow execution time. In order to get compromise values between the mean error 

and computational time, the best number of individuals/particles was found to be 50 for all 

algorithms The other parameters considered for PSO algorithm are c1= 2, and c2= 2. Moreover, 

the number of dimensions (Nod) is five; the maximum iteration number (Noi) is 20.  They are 

used for checking the termination criterion in this algorithm. Consequently, the inertia weight 

factor (w) is selected according to the following equation: 

w = 0.9 - 0.7 * (i /Noi) where i is the i
th
 iteration                                                              (7) 

 

The decreasing of w through the search process, called adaptive inertia weight, is a process 

similar to that of simulated annealing in which temperature is decreased exponentially, 

allowing global and local search [16]. As in most search algorithms, a cost function in PSO is 

needed to evaluate the aptitude of candidate solutions. Generally, the definition of a cost 
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function depends on the problem at hand. However, it should generally reflect the proximity 

of the solutions to the optima. The cost function adopted in this work is selected to be based 

on the sum squared error between deflection at observation points and reference values a 

according to a reference model. It should be noted here that the cost function in this work, 

when using two control actuators system, is chosen to have the following form: 
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where  )(1 oerror is the error between reference values and deflection at the beam free end; 

and  )(2 oerror is the error between reference values and the deflection measured at the 

selected locations along the beam length. 

In many practical cases, only a limited number of effective or dominant modes is excited. The 

objective of active damping is to suppress the vibration of such dominant modes. The 

controller design methodology is proposed to determine the feedback gains and compute the 

suitable control signal applied to a control actuator which is placed in a suitable location at the 

flexible structure. Generating the control signal is based upon the response measured by 

velocity detection sensors. Here, the control problem to be resolved is to add damping to the 

un-damped structure system by feeding back velocity. The complete information about the 

linear state feedback technique is presented in [1]. More specifically, the PSO optimizes the 

linear feedback gains based on minimizing the steady state error between a reference model 

and the beam system outputs at a specific location along the beam through a cost function. 

The state feedback control system is illustrated in Fig. 5. The first three modes in the system 

model are defined as: 

 u t f f f f f f

x t

x t

x t

x t

x t

x t

c ( )  

( )

( )

( )

( )

( )

( )



























11 12 13 14 15 16

1

2

3

4

5

6                                                                        

(9)

 
 

where 161211  ,..., , fff  are the position and velocity feedback gains for three modes design; and 

)( ,...,)( ,)( 621 txtxtx  are the position and velocity system states. To simplify the PSO duties, 

the optimal designed control law is chosen to depend on modal velocity states. The feedback 

gains 131211   and , fff are all assigned to zeros. In the beam system model, the dynamical 

equation of this observer in the vibration application is given by [3]: 

( ) ( ) ( ) ( ) ( ( ) ( ))x Ax Bu Du L y yt t t t t tc d s m                                                                  (10) 

y Cxm t t( ) ( )                                                                                                                      (11) 

 

where L is the 2np observer gain matrix; p is the number of deflection sensor; n is the 

number of modes considered in the system; )(y ts  is the system output; )(y tm  is the observer 

output (-dim p), uc(t) and ud(t) are the control and disturbance forces acting on the structure 

respectively; A is the system matrix, B, D, C and F are respectively the control, disturbance, 

output displacement and the state feedback gain vectors  of the beam structure. 
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Fig. 5. Structure of state feedback control system 

 

Before starting the vibration suppression procedure, the placement of sensors and actuators 

has to be carefully designed; a significant factor to consider is whether they collocated or not 

with the nodes and anti-nodes of the resonant modes. However, the optimal positioning 

problem, which effectively controls vibration with less control effort, becomes very important. 

In this paper, the location of sensors and control actuators is determined, so that the sum of 

the absolute values of mode shapes of all the considered modes at the same location may 

become maximal. Mode shapes and their contributions at each point along the beam length 

are shown in Appendix A. 

 

A. Simulation Results with Single Control Actuators 

In this paper, control was implemented via a single controller placed at the free end because 

this location is not near a node (minimum deflection) of the considered modes. Using the on-

line optimized feedback gains in the control system design, where the convergence of the 

error value and gain parameters corresponding to the best of all particles, yields the overall 

results in time and frequency domains that are obtained at different observation points as 

shown in Fig. 6. The results in this case demonstrated a clear reduction in vibration levels for 

the dominant modes. These results clearly show that the controller was effective for local 

minimisation, but it was not enough for obtaining global cancelation through the beam length. 

To improve system performance, multiple controllers were adopted at some suitable locations 

along the beam length in demonstrated at Section B. 
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a 

 
b 

Fig. 6. Overall results in time and frequency domains at different observation points: a) Controlled beam time 

responses at different observation points, b) Corresponding power spectral density at different locations along the 

beam length 

 

Figs. 7 and 8 show time domain results of the on-line PSO-based controller along the beam 

length using a unit step disturbance signal with different magnitudes when the controller is 

located at the free end location. It is noted in Figs. 7 and 8 that vibration at the first three 

modes is attenuated significantly when the disturbance force equals 0.1N, or when its 

magnitude is changed to 0.05N after 2.5s from the time of simulation. It can be concluded that 

the controller works well for the beam system, where good damping is observed. 
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Fig. 7. Time response of the controlled cantilever beam along its length when the disturbance value equals 0.1N 

 
Fig. 8. Time response of the controlled beam along its length when the disturbance value is changed to 0.05N after 

2.5s from stating time 

 

Fig. 9 demonstrates the average power spectral density throughout the length of the beam 

before and after cancellation for a collocated case. The mean attenuation over all the 

considered modes is found to be 11.11dB. It can be concluded that the modal controller can 

be implemented successfully for suppressing the vibration of flexible structures. 

 
Fig. 9. Average power spectral density before and after cancellation over the beam length 
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B. Simulation Results with Multiple Control Actuators and Deflection Sensors 

To assess the behaviour of using two controllers upon vibration cancellation over the entire 

beam length, controllers and the detection sensor are located at stations 20 and 13 for 

collocated cases. The controllers are conducted on from the starting time of simulation; the 

overall results are shown in Fig. 10 as measured at different locations along the beam 

structure. These results demonstrate and confirm the capability of the suggested procedure 

and control strategy used to efficiently control vibration in the structure, where global 

minimization along the beam is observed. 

 

 
Fig. 10. Controlled structure responses within time and frequency domains measured at different locations along 

the beam 

 

The three dimensional description of the vibration of the controlled beam along its length is 

illustrated in Fig. 11 where two conductors are deployed with two deflection sensors. It is 
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noticed that the beam deflection is zero at the clamped end, but it reaches its maximum 

gradually at the free end. This result is as expected; and it confirms the validity of the FD 

simulation in representing the behaviour of the controlled cantilever beam. 

 

 
Fig. 11. Response along its length after cancellation for a collocated case with two controllers and two sensors 

 

Fig. 12 demonstrates the mean power spectral density throughout the length of the beam 

before and after cancellation for a collocated case. Average attenuation over all the considered 

modes is found to be 12.91dB. It should be noted that a better performance has been obtained 

for the two controllers‟ scheme, where attenuation is found to be higher than that obtained for 

a single controller case. It can be concluded that the adopting of multiple controllers can be 

implemented successfully for suppressing the vibration of flexible structures. 

 
Fig. 12. Average power spectral density before and after cancellation for the collocated case with two controllers 

and two deflection sensors 

 

C. Simulation Results with Multiple Control Actuators and Single Deflection Sensor 

To investigate the effectiveness of the two controllers with a single deflection sensor on the 

performance of a cantilever beam system, the FD approximation of the beam system using 20 

stations with a single sensor located at free end is utilized. The set of results describe the 

controlled beam behaviour when the feedback gains are online tuned by using the PSO 

algorithm. In the present case, simulation is carried out for a 5s when one of the controller 

actuator s and observation point are assumed to be located at the free end of the beam; and the 

other one is located at station 13. Fig. 13 shows the time response of the controlled beam 
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system, where reasonable reduction in the vibration level can be observed along the beam 

length. This is further evidenced in the average corresponding frequency-domain description 

in Fig. 14, where a clear reduction in vibration levels for the dominant modes can be observed. 

These results clearly show that controllers were less effective with only one deflection sensor 

than when two sensors are deployed. The mean power spectral in this case is found to be 

equal 11.55dB. 

 
Fig.13. Beam response after cancellation with two controllers and single deflection sensor along the beam length 

 

 
Fig. 14. Average power spectral density before and after cancellation when two controllers and a single senor are 

deployed 

 

Actually, one of the main problems faced when using this kind of solution is its enormous 

computational demands because the PSO should work during all the period. This makes the 

execution time quite high. For applying such on-line GA controllers on real-time applications 

more than one processor needs to be considered. The adaptation of parallel computing 

techniques to achieve real-time performances would be useful; such implementation is left for 

future work. This problem can be minimized by off-line optimization of the feedback gain 

parameters using the PSO technique. This technique is considered as an initial value in the 

PSO algorithm when it is presented in the on-line control process system. This indicates that 

the PSO is converged quickly to global minimum. It captures, for each iteration, the control 

signal needed with a minimum execution time. 
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V. CONCLUSIONS 

In this paper, an approach to design PSO-optimizer based state feedback controller was 

presented for solving the vibration control problem. The PSO was found to be an effective 

approach for solving this problem because it is relatively easy to comprehend and involves 

simple function evaluations. Extensive simulations have been conducted and presented in this 

work which evaluates the ability of the PSO solution to optimize the parameters of the state 

feedback controller. Simulations were conducted using off-line and on-line PSO-based 

controllers as an adaptive parameters tuner. It can be concluded that the performance of the 

controller improves when multiple controllers and multiple deflection sensors use single 

collated controller/sensor pairs. It was found that the PSO based state feedback controller 

provides an effective solution for the vibration control system optimisation problem. About 

12.5dB cancellation is obtained in the vibration level when two controllers with two 

deflection sensors are employed. 11.11dB vibration level reduction is obtained when a single 

collocated control actuator and sensor are considered. 11.75dB vibration cancellation is 

gained when simulations are conducted using two control actuators with a single deflection 

sensor. The results confirmed the effectiveness of the state controller; and they illustrated that 

the PSO algorithm has the search capabilities necessary to find the vibration problem optimal 

solution. 

 

APPENDIX 

Beam data 

A.1. Cantilever Beam Parameters 

 The data about the beam used in the research described in this paper is as follows: 

Beam shape: Thin rectangular solid beam 

 Beam material: Aluminium 

 Beam length, l: 0.8m  

 Cross section area, A: 2.1894  10 5
 m

2
 

 Mass per unit length, : 0.05933274 Kg/m 

 Shear, EI: 0.100105598 N.m
2
 

 Beam constant, : 1.687189872 m
4
.s

-2
 

A.2. Cantilever Beam Nodes and Antinodes 

Tables A1 and A2 show the location of the cantilever beam‟s nodes and anti-nodes as 

measured from the clamped end. 

TABLE A1 

LOCATIONS OF NODES ALONG THE CANTILEVER BEAM 

Mode Node Distance 

1 0 __ __ __ __ 

2 0 0.78l __ __ __ 

3 0 0.51l 0.87l __ __ 

4 0 0.36l 0.64l 0.90l __ 

 

TABLE A2 

LOCATIONS OF ANTI-NODES ALONG THE CANTILEVER BEAM 

Mode Anti-Node Distance 

1 l __ __ __ __ 

2 0.47l l __ __ __ 

3 0.30l 0.69l l __ __ 

4 0.21l 0.51l 0.78l l __ 

A




2 
EI

A
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A.3. Cantilever Beam Mode Shapes 

 
Fig. A1. Mode shapes and contribution throughout the length of a cantilever beam structure 
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